Beyond the CMB: the Effective Field Theory of Large Scale Structure

Ashley Perko Stanford University

testing inflation

- to probe inflation: measure r or f_{NL}
- CMB constraints on f_{NL} will not be improved much after Planck
- want to get to $f_{\rm NL} < 1$ to test slow-roll inflation

BICEP2/Keck, Planck Collaborations (2015)

Planck Collaboration (2015

first, a brief digression into B-modes

what can B modes tell us?

- B modes sensitive to tensor fluctuations during inflation
- "smoking gun" for inflation: can we make this more precise?
- inflation is the only single-field model that can produce scale-invariant scalar modes
- similar no-go theorem for tensors?

Baumann, Senatore, Zaldariagga (2011)

parameterizing the approach to inflation

- parameterize background solutions as a power law: $a = (t/t_0)^{\alpha}$, so $H = \alpha/t$.
- "slow roll parameter" $-\dot{H}/H^2=1/\alpha$
- $\alpha \to \infty$ is de Sitter
- to solve horizon problem, need k/aH to decrease with time

scaling solutions to the horizon problem

• "not-so-big bang": $\alpha>1$

• contraction: $0 < \alpha < 1$

• "starting the universe": $\alpha < 0$ Creminelli, Luty, Nicolis, Senatore

tensors in EFT of inflation

- epoch that pushes modes outside horizon ends to give normal expansion ⇒ time diffs spontaneously broken
- EFT of inflation: most generic action consistent with symmetry
- keeping only terms fixed by background gives $\langle \gamma^2 \rangle \sim H(t)^2/M_{\rm Pl}^2$
- with speed of sound, $\langle \gamma^2 \rangle \sim H^2/c_\gamma M_{\rm Pl}^2 \Rightarrow$ time-dependent speed of sound can restore scale invariance

$$S = \int d^4x \sqrt{-g} \, \frac{1}{2} M_{\rm Pl}^2 \left[R^{(4)} - 2(3H^2 + \dot{H}) + 2\dot{H}\delta g^{00} - \left(1 - \frac{1}{c_{\gamma}(t)^2} \right) \left(\delta K^{\mu}_{\ \nu} \delta K^{\nu}_{\ \mu} - \delta K^2 \right) \right]$$

scale-invariant tensors

• with speed of sound $c_{\gamma}\sim t^m$, canonically normalized action for helicity modes σ with $dy=(c_{\gamma}/a)dt$ is

$$S_{\sigma} = M_{\rm Pl}^2 \int d^3x dy \ y^{2n} \left(\gamma_{\sigma}^{\prime 2} - (\partial_i \gamma_{\sigma})^2 \right) \ ,$$
 where $n = \frac{\alpha - m/2}{1 - \alpha - m}$

- solutions are Hankel functions, scale-invariant if $n=-1 \Rightarrow m=-2$
- ullet fixes time dependence of c_γ

rapidly varying speed of sound

- result independent of α : all scalings of $a=(t/t_0)^{\alpha}$ allowed?
- because of nonlinear realization of symmetry, couplings that appear in quadratic action also in cubic action with fixed coefficients
- c_{γ} is very rapidly changing: if e^{N} modes go outside horizon, c_{γ} varies by:

$$\frac{c_{\gamma,f}}{c_{\gamma,in}} \sim \left(\frac{t_f}{t_{in}}\right)^{-2} \sim \left(\frac{a_f H_f}{a_{in} H_{in}}\right)^{2/(\alpha-1)} \sim e^{\frac{2N}{\alpha-1}}$$

• but $c_{\gamma} < 1$ for subliminality, so $c_{\gamma} \ll 1$ at some point

constraints from weak coupling

• cubic action is large when $c_{\gamma} \to 0$

$$\frac{L_{\gamma\gamma\zeta}}{L_{\zeta\zeta}} \sim \frac{M_{\rm Pl}^2 a^3 \zeta \dot{\gamma}_{ij} \dot{\gamma}^{ij} c_{\gamma}^{-2}}{M_{\rm Pl}^2 a^3 \dot{\zeta}^2} \sim \frac{1}{c_{\gamma}^{5/2} \sqrt{\alpha}} \langle \gamma^2 \rangle^{1/2}$$

constrained by weak coupling

$$\frac{L_{\gamma\gamma\zeta}}{L_{\zeta\zeta}} \ll 1 \quad \Rightarrow \quad c_{\gamma} \gg 10^{-2} \left(\frac{r}{\alpha}\right)^{1/5}$$

constraints on tensor modes

ullet get bound in terms of r and lpha

$$\frac{N}{|1-\alpha|} \ll 2 - \frac{1}{10} \log \frac{r}{\alpha}$$

- satisfied when $\alpha \to \infty$
- ullet to have a large $lpha\ll 1$, need non-perturbatively small r
- example: for $r > 10^{-6}$ and N = 10, need $\alpha \gtrsim 4$ ($\epsilon_{\rm sl} \lesssim 0.25$)
- these are inflation-like backgrounds

extensions

- NEC-volating backgrounds
- particle production mechanisms

AP, Senatore (to appear)

constraining cosmological parameters with LSS

- projection for EUCLID: $\Delta f_{NL}=3.0$ with $k_{max}=0.15$ Giannantonio et. al. (2011)
- these estimates use only linear theory
- if we can extend UV reach, number of modes goes like k_{max}^3
- for $k_{max} \sim 0.3$, this means $\Delta f_{NL} < 1!$

advantages of EFT

- approximation of high energy (UV) theory at low energies (IR) + perturbative corrections
- UV theory is known: integrate out to get simpler IR theory
- UV theory unknown: parameterize ignorance of UV effects in EFT parameters

an EFT of LSS

- ullet UV = Boltzmann equation for dark matter particles + Newtonian potential
- IR = effective gravitational fluid
- UV theory is known, so parameters can be calculated and extracted from small-scale simulations
- or, write down generic stress tensor and match to observations

UV Construction for DM

- phase space density $f(\vec{x}, \vec{p})d^3xd^3p$: probability that there is a particle in volume d^3xd^3p
- for particles, given by

$$f_n(\vec{x}, \vec{p}) = \sum_n \delta^3(\vec{x} - \vec{x}_n) \delta^3(\vec{p} - ma\vec{v}_n)$$

 each particle obeys collisionless Bolzmann equation:

$$\frac{\partial f_n}{\partial t} + \frac{\vec{p}}{ma^2} \cdot \frac{\partial f_n}{\partial \vec{x}} - m \sum_{\tilde{n} \neq n} \frac{\partial \phi_{\tilde{n}}}{\partial \vec{x}} \cdot \frac{f_n}{\partial \vec{p}} = 0$$

integrate out UV modes

- apply window function that cuts off $k>\Lambda$ and expand $f(\vec{x},\vec{p})$ in moments of $\vec{p}\Rightarrow$ fluid equations for δ and v^i
- equations for higher moments suppressed by mean free path
- DM moves slowly compared to $H\Rightarrow$ effective mean free path $v/H\sim 1/k_{NL}$, so fluid description valid

induced stress tensor

- ullet smoothed effective stress tensor $[au^{ij}]_\Lambda$ is a function of long modes
- ullet expansion in perturbations and k/k_{NL} (constrained by symmetry)

 parameters encode expectation values of short modes in the presence of long modes

perturbation theory

- linear equations relate δ to $\partial_i v^i$, so viscosity and sound speed terms are degenerate at one loop
- fluid equations at one loop

$$\dot{\delta} + \frac{1}{a}\partial_i((1+\delta)v^i) = 0$$

$$\partial_i \dot{v}^i + H\partial_i v^i + \frac{1}{a}\partial_i(v^j\partial_j v^i) + \frac{1}{a}\partial^2 \phi = -\frac{1}{a}c_s^2\partial^2 \delta + \frac{1}{a\bar{\rho}}\partial_i\partial_j \Delta \tau^{ij}$$

perturbation theory

- expand in perturbations: $\delta = \delta^{(1)} + \delta^{(2)} + \delta^{(3)} + \delta^{(ct)}$
- higher order terms sourced with Green's function
- diagrammatic expansion

$$\delta^{(1)} = \begin{array}{c} t \\ \star t_0 \\ \delta^{(2)} = \end{array}$$

$$\delta^{(2)} = \begin{array}{c} t \\ t_1 \end{array}$$

loops + counterterms

- $\langle \delta \delta \rangle = \langle \delta^{(1)} \delta^{(1)} \rangle + \langle \delta^{(2)} \delta^{(2)} \rangle + \langle \delta^{(1)} \delta^{(3)} \rangle + 2 \langle \delta^{(1)} \delta^{(ct)} \rangle$
- from equations of motion: counterterm proportional to linear field, $\delta^{({\rm ct})} \sim \left(\frac{k}{k_{NL}}\right)^2 \delta^{(1)}$

- ullet Smoothed fields δ and v^i depend on smoothing scale Λ
- Λ -dependence in loops canceled by Λ -dependence of counter-term c_s

dark matter results at two loops

Carrasco, Foreman, Green, Senatore (2013)

status of EFT of LSS

- redshift-space distortion
 Senatore, Zaldarriaga (2014)
- bias
 Senatore (2014), Angulo, Fasiello, Senatore, Vlah (2015)
- higher redshifts
 Foreman, Senatore (2014)
- higher correlation functions
 Angulo, Foreman, Schmittful, Senatore (2014)
- baryons
 Lewandowski, AP, Senatore (2014)

the problem with baryons: astrophysical processes

- various baryon processes modify the matter power spectrum by >1% on relevant scales
- baryon effects include: star formation, SN feedback, AGN feedback

a fluid description for baryons?

- complicated to simulate baryon physics, analytical treatment possible?
- baryons explode and stream out: effective fluid?
- very non-relativistic, even when hot and mass density lost at smoothing scale negligible
- in a cluster baryons and dark matter occupy the same regions

a simple modification of EFT

• generalize to 2 particle species interacting only via gravity with relative densities $w_b = \Omega_{\rm baryon}/\Omega_{\rm m}$, $w_c = \Omega_{CDM}/\Omega_{\rm m}$

$$\dot{\delta}_{\mathbf{c}} = -\frac{1}{a}\partial_{i}((1+\delta_{\mathbf{c}})v_{\mathbf{c}}{}^{i})$$

$$\dot{\delta}_{\mathbf{b}} = -\frac{1}{a}\partial_{i}((1+\delta_{\mathbf{b}})v_{\mathbf{b}}{}^{i})$$

$$\partial_{i}\dot{v}_{\mathbf{b}}{}^{i} + H\partial_{i}v_{\mathbf{b}}{}^{i} + \frac{1}{a}\partial_{i}(v_{\mathbf{b}}{}^{j}\partial_{j}v_{\mathbf{b}}{}^{i}) + \frac{1}{a}\partial^{2}\phi = -\frac{1}{a}\partial_{i}(\partial\tau_{\rho})_{\mathbf{b}}{}^{i} + \frac{1}{a}\partial_{i}(\gamma)_{\mathbf{b}}{}^{i}$$

$$\partial_{i}\dot{v}_{\mathbf{c}}{}^{i} + H\partial_{i}v_{\mathbf{c}}{}^{i} + \frac{1}{a}\partial_{i}(v_{\mathbf{c}}{}^{j}\partial_{j}v_{\mathbf{c}}{}^{i}) + \frac{1}{a}\partial^{2}\phi = -\frac{1}{a}\partial_{i}(\partial\tau_{\rho})_{\mathbf{c}}{}^{i} + \frac{1}{a}\partial_{i}(\gamma)_{\mathbf{c}}{}^{i}$$

$$\partial^{2}\phi \sim \omega_{b}\delta_{b} + \omega_{c}\delta_{c} \qquad \text{effective stress tensor}$$

momentum exchange part, only affects stochastic term

counter-terms

• at one loop, four possible parameters:

perturbation theory

- basis of adiabatic (total matter) $\delta_A = w_{\bf c} \delta_{\bf c} + w_{\bf b} \delta_{\bf b}$ and isocurvature modes: $\delta_I = \delta_{\bf c} \delta_{\bf b}$
- from linear equations, $\delta_I^{(1)} \sim \text{const}$ and $\delta_A^{(1)}(k,a) \sim D(a)$, linear growth factor for total matter
- at z=0, $\delta_I/\delta_A\sim 10^{-2}\to$ isocurvature mode suppressed, can neglect in loops
- ullet because isocurvature loops neglected, counterterms needed for only adiabatic diagrams, so only two c_s parameters come in

isocurvature mode

Angulo, Hahn, Abel (2013)

resummation of bulk flows

- one fluid: large bulk flow does not affect equal time correlators because of equivalence principle
- two fluids: argument still holds for adiabatic mode
- but relative motion between baryons and DM gives dynamical effect in all observables
- it is an IR effect, so we can resum it

bulk flows

- perturbation theory done in Eulerian space: fixed reference frame
- Lagrangian approach: track fluid flow using displacement \vec{s} from inital position \vec{q} Matsubara (2008)
- displacements affect matter density: $\delta(\vec{k},t)=\int d^3q \; \exp[-i\vec{k}\cdot(\vec{q}+\vec{s})]$
- effects of large displacements break perturbation theory in Eulerian theory, but are perturbative in Lagrangian theory

IR resummation: hybrid approach

- IR-resummed Eulerian correlator $\xi(\vec{r})$ at a given order in perturbations is sum of $\xi(\vec{q})$ at lower orders weighted by probability to be displaced from \vec{q} to \vec{r}
- from Lagrangian approach, $P(\vec{r}|\vec{q}) \sim \int d^3k \ e^{-i\vec{k}\cdot(\vec{q}-\vec{r})} e^{-(\vec{k}\cdot\Delta\vec{s}_1)^2}$
- resums leading effect of long displacements on density, remaining effect is perturbative

$$\xi|_{\epsilon_{\delta}^{N}}(\vec{r}, t_{1}, t_{2}) = \sum_{j=0}^{N} \int d^{3}q \ P|_{\leq \epsilon_{\delta}^{N-j}}(\vec{r}|\vec{q}, t_{1}, t_{2}) \ \xi|_{\epsilon_{\delta}^{j}, \epsilon_{s}^{j}}(\vec{q})$$

corresponds to perturbative corrections to Zeldovich approximation

effect of relative velocity on BAO peak

- modify IR resummation to include baryons: large effect in cross-correlation
- \bullet relative velocity effect large at $z\sim 40$ and leads to a breaking of perturbation theory
- EFT provides a consistent perturbative scheme, with higher order corrections

Tseliakhovich and Hirata (2010)

Lewandowski, AP, Senatore (2014)

comparison to simulations

$$P^{\mathbf{c}}(k) = P^{\mathbf{c}}_{11}(k) + P^{A}_{1-\text{loop}}(k) - 2(2\pi) \left(\bar{c}_{A}^{2}(a_{0}) + w_{\mathbf{b}} \bar{c}_{I}^{2}(a_{0}) \right) k^{2} P^{A}_{11}(k)$$

$$P^{\mathbf{b}}(k) = P^{\mathbf{b}}_{11}(k) + P^{A}_{1-\text{loop}}(k) - 2(2\pi) \left(\bar{c}_{A}^{2}(a_{0}) - w_{\mathbf{c}} \bar{c}_{I}^{2}(a_{0}) \right) k^{2} P^{A}_{11}(k)$$

- $\bar{c}_A^2 = c_{\text{no baryon}}^2 + w_b \Delta \bar{c}_A^2$
- $\Delta \bar{c}_A^2$: effect of baryons on total matter speed of sound, determine by matching to $P^A/P_{
 m dm~only}^A$
- \bar{c}_I^2 : effect of having 2 species, determine by matching to P^b/P^A

EFT results at one loop: determining $\Delta \bar{c}_A^2$

simulations used

Simulation	$w_b \Delta \bar{c}_A^2 \left[k_{\rm NL}^{-2} \right]$	$\bar{c}_I^2 \left[k_{\mathrm{NL}}^{-2} \right]$	Description
AGN	0.42 ± 0.13	-2.17 ± 0.24	Includes AGN (in addition to SN feedback)
DBLIMFV1618	0.24 ± 0.08	-1.25 ± 0.24	Top-heavy IMF at high pressure, extra SN
			energy wind velocity
NOSN	0.063 ± 0.017	N/A	No SN energy feedback
NOSN_NOZCOOL	0.059 ± 0.033	-0.72 ± 0.2	No SN energy feedback and cooling assumes
			primordial abundances
NOZCOOL	0.10 ± 0.034	N/A	Cooling assumes primordial abundances
WDENS	0.16 ± 0.025	-1.06 ± 0.24	Wind mass loading and velocity depend on
			gas density (same SN energy as REF)
WML1V848	0.15 ± 0.025	-0.96 ± 0.24	Wind mass loading $\eta=1$, velocity $v_w=1$
			$848~\mathrm{km/s}$ (same SN energy as REF)
WML4	0.093 ± 0.034	-0.72 ± 0.24	Wind mass loading $\eta=4$ (twice the SN
			energy as REF)
REF	0.093 ± 0.034	-0.77 ± 0.29	Reference simulation

EFT results at one loop

EFT results at one loop: determining \bar{c}_I^2

$$\bar{c}_I^2 = -0.7 \text{ to } -2 \ k_{\rm NL}^{-2}, \ k_{NL} = 4.0 \ {\rm Mpc}^{-1}$$

EFT results at one loop: P_b

effect of baryons

- \bullet c_s^2 parameters order one: baryon effects well approximated by $\ensuremath{\mathsf{EFT}}$
- effect of baryons captured in just one extra parameter, and a simple functional form $k^2P_{11}^A(k)$
- very different baryon effects (difficult to simulate) correspond to different sound speeds

concluding remarks

- LSS can potentially beat CMB constraints on primordial parameters
- ullet we must improve constraints by increasing $k_{
 m max}$
- including baryons an important part of matching theory to observations